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Abstract. Transcriptomics response of SK-N-AS cells to methamidophos
(an acetylcholine esterase inhibitor) exposure was measured at 10 time
points between 0.5 and 48 h. The data was analyzed using a combina-
tion of traditional statistical methods and novel machine learning al-
gorithms for detecting anomalous behavior and infer causal relations
between time profiles. We identified several processes that appeared to
be upregulated in cells treated with methamidophos including: unfolded
protein response, response to cAMP, calcium ion response, and cell-cell
signaling. The data confirmed the expected consequence of acetylcholine
buildup. In addition, transcripts with potentially key roles were identified
and causal networks relating these transcripts were inferred using two dif-
ferent computational methods: Siamese convolutional networks and time
warp causal inference. Two types of anomaly detection algorithms, one
based on Autoencoders and the other one based on Generative Adver-
sarial Networks (GANs), were applied to narrow down the set of relevant
transcripts.

1 Introduction

Rapid determination of the mechanism of action (MoA) of an unknown or novel
xenobiotic (toxin, drug, pathogen) and its consequences is important both sci-
entifically and for biodefense. It is particularly important to develop methods to
identify candidates that are independent of existing experimental data, as there
may be no such data available.

Time series data generated by omics experimental techniques provides a
wealth of data about change in relative concentrations of transcripts, proteins
and metabolites. For example, chemically perturbing cells can result in thou-
sands of mRNAs with at least a 2 fold expression change. The challenge is to get
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the most information purely from the data, before augmenting the conclusions
with knowledge from databases and literature. Thus, it is important to consider
not only what changes, but how it changes over time, to identify key responders
and how they organize into cellular processes.

As part of the DARPA Rapid Threat Assessment project we developed a suite
of data analysis methods to identify candidate biological players and processes
that make up the cellular response to a challenge. These included traditional
statistical analysis, shape/feature analysis, Gaussian process representation, new
machine learning algorithms for identifying anomalies and inferring causal rela-
tions between time profiles. The algorithms and methods were developed using
data from HepG2/C3A cells exposed to a series of different drugs each affecting
different known cellular processess. To test the robustness and generality of the
analysis methods we selected a different cell type (SK-N-AS human neuroblas-
toma cells) and toxin (the organophosphate methamidophos). We expected the
biological noise to be different in a different cell type. We also expected the tim-
ing and organization of response to an organophosphate to be different from the
previously tested drugs. This allows checking that parameters chosen for mul-
tiple algorithms work in a more general setting. Here we present three analysis
algorithms not previously described, and discuss the application of our suite of
algorithms to analysis of methamidophos response data.

Methamidophos is a cholinesterase inhibitor. The enzymes acetylcholinesterase
(ACHE) and butyrylcholinesterase (BCHE) convert acetylcholine into the inac-
tive metabolites choline and acetate. The result of acetylcholine esterase inhibi-
tion in cultured cells is that acetylcholine builds up and continues to bind and
activate muscarinic and nicotinic acetylcholine receptors.

Transcriptomic response of SK-N-AS cells to methamidophos exposure was
measured at 10 time points between 0.5 and 48 h. The data was analyzed us-
ing our suite of algorithms. This lead to multiple classifications of transcripts
and groups of transcripts as candidate elements of the methamidophos broader 4

MoA. GO process term annotations (using UniProt [5] or PatherDB [13]), databases
and curated experimental results were used to refine the data analysis and de-
termine possible biological roles of the identified transcripts. Several biological
processes were hypothesized as candidate components of the overall mechanism
of action, including unfolded protein response, response to cAMP, and calcium
ion related processes. The data also shows response to an increase in the sec-
ond messenger diacylglycerol (DAG) which is consistent with acetylcholine build
up. However, the DAG response was not identified by over-expression analysis,
partly because of a lack of relevant GO annotations. Transcripts with potentially
key roles were identified and causal networks relating responsive transcripts were
inferred. Some of the inferred causal edges correspond to known relations, most
are novel and more work is needed to understand what they mean.

4 By broader here we mean the processes the cell is using to respspond to a detected
challenge, going beyond the initial entry or binding mechanism.
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Plan In Section 2 we give an overview of the data analysis process and describe
the novel classification and causality inference algorithms. The main results of
the data analysis are discussed in Section 3. Details of the experiments generating
the data are given in Section 4. Section 5 contains some discusion of results,
related and future work. The appendix 6 provides some additional data analysis
details.

2 Overview of Data Analysis

Input Transcriptomics Data

basic time profiles GP time profiles

up/dn charts 
regulation intervals Clustered 

transcripts

Autoencoder ranks
GAN atypical ranks
GAN typical ranks

Siamese Twin 
Causality

Feature summary tables

Identified biological 
processes

Selected 
transcripts

Knowledge 
bases

Time Warp 
Causality

Fig. 1. Data analysis schematic

Figure 1 shows a schematic of our data analysis process. The left branch uses
log2 fold change (basic) time profiles derived from the means of the control and
treated signals in the usual way. Up/down charts map transcripts to the first
time point the log2 fold change magnitude passes 1. Regulation intervals delimit
times that log2 fold change stays above 0.75 or below −0.75. The right branch
uses time profiles obtained by Gaussian process (GP) modeling [24]. Using these
time profiles, transcripts are clustered (k-means using PCA to reduce dimen-
sionality), and ranked by contribution to PCA components and by two machine
learning algorithms, one using autoencoder techniques (see [24]) and one using
Generative Adversarial Nets (GANs, [6], Section 2.3). Transcripts are ranked
highly as anomalies according to how poorly they are reconstructed from the
autoencoding, or how unsure the trained GAN discriminator is that the time
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profile represents a transcript. Transcripts are also given a ‘real/typical’ ranking
according to how confident the GAN discriminator is that the time profile rep-
resents a transcript. Two algorithms were used to infer potential ‘causal’ edges
between time profiles. The Siamese twin causality detection algorithm [19] is
based on two Siamese neural networks [3]. One Siamese network is trained to
detect undirected causality; the other is trained to detect lag. Lag detection is
used to direct the undirected causality edges (see Section 2.4). The Timewarp
algorithm operates on basic time profiles and uses a variant of the Needleman-
Wunsch alignment algorithm [14] to align time profiles (see Section 2.5). The
results of the analyses, along with an indication of satisfaction of several signif-
icance filters, are collected in a ‘feature’ table that can be sorted to highlight
features of interest. We used the ranking functions and significant change filters
to select a set of transcripts, called Top20X, as the starting point for further iden-
tification of MoA candidates. We consider two categories: biological processes,
individual transcripts. To identify candidate processes we used PatherDB over
representation analysis [13] combined with our GO term annotations of k-means
clusters [24]. Potentially key transcripts were selected from the Top20X tran-
scripts using a combination of ranking, clustering, and GO annotations.

2.1 The input data

Transcriptomic response was measured at ten time points (0.5, 1, 2, 4, 6, 8, 18,
24, 32, and 48 h) after treatment of SK-N-AS cells with and without methami-
dophos (2mg/ml) using 3 technical replicates. 5 This resulted in a data set with
measurements for 3 treated samples and 3 control samples for each time point for
each transcript using microarray based technology. The analysis software pro-
duces log2 intensities for more than 67,000 transcripts. We restricted attention
to the approximately 18,000 transcripts that are known to code proteins.

2.2 Gaussian Process Modeling

The GP (for Gaussian process) profiles are based on a distribution of continuous
log2 intensity profiles for control and treated samples for each transcript using
Gaussian processes (described in [24]). Arrays of means and standard deviations
(SD) for control and treated processes were generated by sampling the continuous
distributions at 100 time points between 0 and 48 h chosen uniformly on a log
scale.6 The ratio was then computed as the difference between the treated and
control (log2(X/Y ) = log2(X) − log2(Y )). Maps associating transcripts to a
number proportional to the space between the 1 or 2 SD bands around the
control and treated means were defined. An approximation of the derivative of

5 We use the term technical replicate as defined by NIH: Technical replicates are
repeated measurements of the same sample that represent independent measures of
the random noise associated with protocols or equipment.

6 The distribution of intensity profiles projects to a Gaussian distribution with asso-
ciated mean and standard deviation at each time.
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Fig. 2. GP profiles for CYP1B1, TXNIP, EGR1, and CCNB2. The dots with whiskers
are the input data. The black/green dotted line is the control/treated mean value (all
log2), sampled at 100 time points between 0 and 48 h. The blue dotted line is the (log2)
ratio (the difference between the green and black). The grey/green bands around the
control/treated lines depict the 2 SD bands.

ratio time profile was computed as another view of the data. Figure 2 shows GP
profiles for four transcripts with different features. The control 2 SD bands for
CYP1B1, EGR1 and TXNIP are fairly narrow, and the control is basically flat
for CYP1B1 and EGR1 while it is rising for TXNIP and has a small downward
slope for CCNB2. CYP1B1 has substantial white space between the 2 SD bands
during the middle times, while EGR1 has substantial white space between the
2 SD bands at the later times, indicating a significant change. TXNIP has no
white space between the 2 SD bands, but does have white space between the 1
SD bands at 15 time points (computed from the control and treated SD profiles).

PCA and cluster analysis. Principle Component Analysis (PCA) (based on ra-
tio and on derivative GP profiles) was used for dimension reduction and to
rank transcripts according to their contribution to overall variation. For the
methamidophos data, three PCA components account for 95% of the variation.
We explored several standard clustering algorithms. In this study, we focused
on k-means clustering with 128 clusters, as this clustering method seems to
give the most useful information.7 Clusters were computed (for both ratio and
derivative) using the PCA 3-dimensional representation of GP profiles. Clusters
were annotated with GO process, GO function, and HUGO Gene Nomenclature
Committee (HGNC) family terms using a heuristic method to compute likely
classifications of a cluster from classifications of its elements. [24]

7 This is based mainly on size of clusters and distribution of cluster sizes.
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Ranking. In addition to PCA ranking, autoencoder techniques were used to de-
rive compressed representations of the GP profiles. Contrary to the usual criteria,
the transcripts that are least accurately recovered are the potentially interest-
ing ones, since they don’t behave like most transcripts, i.e. they are anomalies
from the autoencoders perspective (see [24]). Generative Adversarial Network
(GAN) techniques were used define two additional rankings: atypical/fake and
typical/real. The GAN ranking algorithm is described in the next subsection.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [6] use a game-theoretic formulation
to define the objective function of a machine learning problem. They involve two
subnetworks, a generator and a discriminator that play against each other, so
that ideally improvements in one network during training lead to corresponding
improvements in the other until a Nash equilibrium is reached. Advantages of
GANs are that they learn a generative model that approximates the full data
distribution and they are less prone to overfitting than pure discriminative ap-
proaches due to the lack of a direct coupling between the generative model and
the data. While there are other interesting generative applications (see e.g. [19]),
we are primarily interested in obtaining a robust discriminator to distinguish
time series anomalies from typical behavior.

Our training data set consists of 90% (the other 10% are used for validation)
of the log-ratio time series (excluding the uninformative time 0) for all genes
estimated using Gaussian processes as explained in [24]. The data is locally
normalized for each time point (to mean 0 and unit variance) to abstract from
the absolute magnitude. Our discriminator network with an input dimension of
100 (size of the time series) consists of two layers, a 1D convolutional network (we
use 20 features, window sizes 21, 41, and 61, stride 1) with exponential linear
unit (ELU) activation, followed by a dense layer with linear activation. Note
that we deviate from the traditional convolutional architecture by not using a
pooling layer for better stability of the training process. The generative network
takes a 20-dimensional normal distribution as an input, that is passed through
a dense layer with ELU-activation resulting in a tensor of dimension 80 × 20,
60 × 20, or 40 × 20, depending on the window sizes discussed above. Finally, we
apply a transposed 1D convolutional layer to obtain a time series represented
as a vector of dimension 100. The GANs are specified using TensorFlow [1] and
Edward [22], a framework for probabilistic programming that recently became
part of TensorFlow Probability. [21] We use TensorFlow’s Adam optimizer with
default settings with the standard GAN loss function. Each GAN is trained for
100000 epochs with a batch size of 1000 and achieved good convergence (based
on the loss on the validation set) for all the window sizes. A second set of GANs
with the same window sizes was trained on a globally normalized data set (over
all time points and genes, thereby maintaining relative information about the
magnitude of changes), which required a larger feature dimension of 50 to achieve
satisfactory convergence.
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Finally, we applied the discriminators (for all window sizes and the two vari-
ations in terms of normalization) to the full set of log-ratio time series to obtain
a score in the interval [0, 1] and a corresponding ranking of all genes, with values
closer to 0 denoting an anomaly (fake) and values closer to 1 denoting a more
typical (real) element of the overall time series distribution. The rankings based
on globally normalized training data turned out to be more useful in our analysis,
in that transcripts that are up/down regulated by 1 log2 fold or have substantial
1 SD separation are more likely highly ranked (appear at the extremes of the
ranking list) than transcripts that exhibit much smaller change and/or less sep-
aration of treated from control. Thus we used only the ranks based on globally
normalized data in our analysis process.

2.4 Siamese Convolutional Networks

As discussed in more detail in [19] we decompose the problem of causality de-
tection into two subproblems, each addressed by a type of Siamese neural net-
work. [3] The first model is designed to detect and probabilistically quantify the
existence of causality, while a second model is used to probabilistically determine
its direction.

The undirected causality detector is a Siamese neural network, that is a neural
network with two identical subnetworks that are each responsible for processing
one of the arguments of the binary symmetric causality relation. Each argument
is a time series (of size w = 80 consistent with our synthetic data to be explained
below). The replicated subnetwork is a 1D convolutional network (we use a win-
dow size w′ = 61 and stride 1) with bias and a rectified linear unit (ReLU)
activation function yielding a tensor (20 × 50 dimensional). This is followed by
an average pooling layer yielding a vector (50 dimensional), followed by a dense
layer with the same output dimension and again with bias and relu-activation.
Hence, the output of each subnetwork is a vector in feature space (50 dimen-
sional). The two outputs are combined by a dot-product layer (which captures
the symmetry of the problem as part of the architecture). As usual for Siamese
networks, the symmetry is also exploited by weight-sharing between the two sub-
networks. Finally, to obtain a probabilistic output, a sigmoid function is applied
to a linear transformation of the scalar result from the dot-product, which can
also be viewed as trivial dense layer with bias and sigmoid-activation. As a loss
function we use binary cross-entropy and as an optimizer we use TensorFlow’s
implementation of Adam (with default parameters).

The training and validation data set is based on a synthetic dynamic model,
that we can only briefly summarize here and refer to [19] for more details. Using
our Gaussian process as a template we generate positive and negative examples
of causally related “synthetic” genes, or more precisely, corresponding time series
that are biological plausible in the context of our experiment. There is a complex-
ity parameterm involved in the construction that we refer to as mixin-parameter.
It allows us to vary the complexity of the synthetic model by limiting the num-
ber of genes that can participate in an interaction, which is modeled by a noisy
linear superposition of time series sampled from our Gaussian processes model
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with a variable time lag. Employing curriculum training, we train the models
with increasing complexity of the training data set. We use the mixin-parameter
with settings m = 0, 2, 4 to vary the complexity of the synthetic model. While we
also explored higher parameters, we estimated that a target of m = 4 should be
sufficient for biologically plausible results. Each stage is trained for 1000 epochs
with a batch size of 20000. Our synthetic data set contains 2000000 pairs, from
which we generate training and validation sets by random split of 90% vs. 10%.

To detect the direction of an already established causality, we define a lag
detector again a Siamese neural network, albeit a somewhat unconventional one
detailed in [19], that after training estimates the lag in a normalized range [−1, 1].

As before, the replicated subnetwork is a 1D convolutional network with
bias and a ReLU-activation function followed by a dense layer again with bias
and ReLU-activation. Unlike in the causality detector there is no pooling layer
involved. Hence, the output of each subnetwork is a tensor (20×50 dimensional).
After flattening, the two outputs are combined by a subtraction layer (which
captures the antisymmetry of the problem) yielding a vector (of dimension 1000),
The next layer is a dense layer without bias and tanh-activation reducing the
dimension to 50, and finally a linear dense layer without bias is used to obtain a
scalar output. As a loss function we use mean square error and as an optimizer
we again use TensorFlow’s implementation of Adam (with default parameters).
The training and validation data set for the lag detector is generated in the
same way as the (positive) synthetic pair set for the causality detector (again
1000000 pairs), but we allow and track positive, negative, and zero time lags in
the construction. Training and validation sets are then generated from this set
of labeled pairs. For training we again use curriculum learning with the same
parameters as for the causality detector.

We use these Siamese networks to synthesize two types of graphs. An undi-
rected causal network is defined by nodes corresponding to all genes in a given
subset and edges between pairs of genes for which the causality detector de-
tects a dependency with at least the cutoff probability (another parameter in
the graph synthesis process). A directed causal network is a refinement of an
undirected causal network. Each edge is directed according to the prediction
of the lag detector based on a positive threshold in the interval (0, 1] that was
associated with a probability during validation. Each undirected edge becomes
a directed edge if the lag prediction reaches at least the positive threshold and
remains undirected otherwise.

As an example, the validated accuracy for the synthesized networks used in
this paper using a synthetic model with mixin-parameter m = 4) is 0.75 for the
existence of a causal relation and 0.72 for its direction.

2.5 Time Warp Causal Inference

Time warp causal inference employs two primary algorithms for its operation:
bootstrap resampling of the data and alignment of cause and effect events in
time using the NeedlemanWunsch algorithm. [14] Comparison with N-th order,
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dynamic Bayesian networks indicates superior performance for time warp causal
inference.

We begin by setting a threshold for significant fold change a threshold of 2.0
is common.8 A fold change over 2.0 is considered high; below 1/2 is considered
low. For every transcript at every time point, there are two sets of concentration
data: a treated set and a control set. The statistical t-test determines whether
the means of the two sets are statistically different with a given confidence level.
If the t-test indicates that they are different with satisfactory confidence, we
can compute mean fold change (treated/control) to determine if the transcript
is high or low at that point. Thus, the t-test can distinguish among three cases:
high, low, and not statistically different. We need to distinguish among four
cases: high, low, same (nominal), and too noisy to make a conclusion with high
confidence. Data points that are too noisy may be treated as missing.

We are able to make the distinction among the four cases by using bootstrap
resampling of the data. For a specific transcript at a given time point, assume
each of the two data sets contains 3 concentration readings. With these two data
sets, we can calculate 9 possible fold change ratios and then to calculate a mean
fold change ratio for the data set. To bootstrap resample:

– Repeat 500 times
• Sample with replacement the three readings in the treated set to make

a new treated set
• Sample with replacement the three readings in the control set to make

a new control set
• calculate the fold change ratio mean using the two, new data sets

– Sort the 500 means to make a fold change distribution for this transcript at
this time point

– Based on the desired confidence level (e.g. 85%), delete the extremes of the
distribution

– Compare remaining distribution with fold change thresholds

The Needleman-Wunsch alignment algorithm [14] is widely used for global, ge-
netic sequence alignment. This algorithm uses an edit graph to align two genetic
sequences, performing approximate matches to subsequences in arbitrarily dif-
ferent locations in each sequence by warping (adjusting) the space between the
two sequences using insertions and deletions as appropriate. The algorithm uses
dynamic programming that minimizes a cost function reflecting the cost of the
insertions and deletions. To align cause and effect events with unknown, vari-
able delays between cause and effect, time warp is needed (analogous to the way
Needleman-Wunsch warps space in sequence alignment). To make our time warp
edit graphs, each row and column of the edit graph is labeled with a value (high,
nominal, or low) and the time of measurement. Unknown values are omitted.
We then align the two event sequences using dynamic programming, preserving
causality: effects events cannot precede cause events. A slightly higher cost is as-
sociated with aligning two events that are widely separated in time. Since causes

8 Note that here we are using linear fold change rather than log2.
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Fig. 3. In the first distribution, the central 85% of the distribution all lies below the low
threshold of 0.5, so the distribution is labeled low. In the second distribution, the central
85% is between the low threshold and the high threshold of 2.0, so this distribution is
labeled nominal (treated and control are same). In the third distribution, the central
85% all lies above the high threshold, so the distribution is labeled high. In the last
distribution, the central 85% overlaps both the nominal area and the high area, so this
distribution is labeled unknown.

can activate or inhibit effects, we initially match non-nominal events without re-
gard to direction (high or low). Once the optimal alignment is identified, we
produce both activate and inhibit alignment scores. For analysis purposes, we
use the larger of the two scores exclusively. Figure 4 illustrates the algorithm. On
the left, the subsequence cg is matched by the Needleman-Wunsch algorithm de-
spite being offset in the two global sequences. On the right, the time warp causal
inference algorithm matches both event pairs even though they have differing
delays. N-order dynamic Bayesian networks are unable to find such matches.
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a t g c g t a t g c g - t a t - g c g t
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Fig. 4. Timewarp illustration.
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3 Results of data analysis

3.1 Global response features

Temporal distribution of response. To get an idea of the shape of SK-N-AS cell
response to methamidophos treatment we compute maps from transcripts to the
first measured time when the log2 ratio at that time is greater than 1 (up by
map) or less than −1 (down by map).
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Fig. 5. Up/Down By Charts showing the percent of transcripts up/down by (first
crossing the 1 log2 fold threshold) at each measured time point. (Left) computed using
the basic time profiles. (Right) computed using the GP time profiles.

The results are summarized in Figure 5. The basic chart (left) shows a large spike
of upregulation at 1h. Many of these transcripts show a peak at 1 h and little
change at other times. Volcano plots (not shown) for the transcriptomics data
suggest a possible experimental artifact at 1 h. This suggests the 1 h responders
should be viewed with suspicion. This is smoothed away in the GP chart (right).
Conversely, the basic chart shows little further action until 32 h while the GP
chart shows substantial upregulation beginning at 18 h. This suggests that it is
important to consider analysis based on both the basic time profiles and the GP
time profiles, and to have multiple criteria for selection, to get the most out of
the data.

Cell cycle. We used the cyclin cell-cycle checkpoint markers CCNE2, CCNA2,
CCNB2, and CCND1 to get a picture of the global cell cycle state of the cells
after methamidophos exposure. Figure 6 shows the basic time profiles of these
transcripts. We see a down regulation of CCNE2 from 18 h, indicating that the
cells have has passed G1/S. There is a sustained upregulation of CCNA2 and
CCNB2 starting at 32 h, indicating a G2 arrest at 32 h.

Predicates. We used the various ranking functions and significance filters to de-
fine predicates to select sets of transcripts to examine. Predicates upby t / dnby
t are derived from the up/down chart maps. For t one of the measured times,
a transcript satisfies upby t (dnby t) if the log2 ratio first passes 1 (−1) at at
time t. Thus for t = 18h, upby t is the set of transcripts with log2 ratio first
exceeding 1 at 18 h. We defined a modest size (194) set of transcripts, named
Top20X, to initially consider. Top20X consists of transcripts that are ranked in
the top 20 of at least one of the ranking functions: PCA (ratio or derivative),
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Fig. 6. Cell-cycle state: Basic time profiles for Cyclins

any of 3 principal components positive or negative; GAN fake (atypical, anoma-
lous) or real (typical), according to one of the three GAN models; or one of
the autoencoders-based ranks. Furthermore transcripts in Top20X must have a
(significant) log2 fold change magnitude of at least 1 at some measured time, or
have 1 SD separation of control and treated GP profiles for at least 15 (of 100)
sampled times.9

We note that of the transcripts upregulated by 1 h (recall the 1 hour spike
in Figure 5) only 24 belong to Top20X. Of these, only TIPARP has sustained
upregulation. It is classified GAN real. The rest are included in Top20X because
of PCA ranking. This seems to confirm that although the 1 h data is suspect,
perhaps it should not simply be dropped.

3.2 Candidate MoA Biological Processes

To identify cellular processes that are part of the SK-N-AS cell response to
methamidophos, we examined GO process terms associated with responsive tran-
scripts in several ways. PantherDB [13] was queried for over representation using
several transcript sets (see Appendix 6.2 for details). For example, from the 545
transcripts upby 1 h, interferons were identified in an immune response group.
From 155 transcripts upby 32 h, multiple process groups were found, including:
metabolic processes, response to growth factors, circadian rhythm, chromatin
related, and cell cycle. From 62 transcripts upby 48 h, heat shock and protein
folding stood out. We also manually scanned GO process terms associated with

9 Causal network information was not used in the definition of Top20X. More details
about these predicates can be found in 6.1. A spread sheet listing these transcripts
and many of the properties of their time profiles can be found at [20].
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clusters by our cluster analysis algorithm, and GO process terms associated with
the Top20X transcripts by UniProt. Three process types stood out: unfolded
protein response (UPR, including ER stress), cyclic adenosine monophosphate
(cAMP) response, and calcium ion (Ca++) related processes. In addition, anal-
ysis of the data with the MIRU tool [27] found a cluster associated to cell-cell
signaling, suggesting we look for cell-cell signaling indicators in our analysis (see
Appendix 15 for details). Using the resulting process suggestions we investigated
further.

Unfolded Protein Response (UPR). Five transcripts were identified by Panther
overexpression analysis of the upby 48 h transcripts as being annotated with
UPR: HSPA1A, HSPA1B, HSPA5, HSPA6 and DNAJB1. The first four code for
heat shock proteins. DNAJB1 stimulates the folding of unfolded proteins medi-
ated by HSPA1A/B [7].

Fig. 7. Time profiles of UPR transcripts.

From six clusters annotated with UPR related terms, nine transcripts were
annotated with UPR related terms: BHLHE40, DNAJC2, HIST2H2BE, HSP90B1,
HSPA4L, HSPA5, HSPH1, JUN, and XBP1. Five additional Top20X transcripts
are annotated with UPR terms: CREBRF, DDIT3, GNG2, HSP90B1, HSPA4L,
HSPA5, JUN, and PPP1R15A. Taken together we have seventeen transcripts
associated to UPR based on our data analysis. Five are ranked in the top 20
GAN real (DDIT3, HIST2H2BE, HSPA5, JUN, PPP1R15A) and two are ranked
in the top 20 GAN fake (CREBRF and GNG2). We also consulted the Reac-
tome “Genes involved in Unfolded Protein Response” pathway and obtained 3
additional transcripts to consider: ATF3 DNAJC3 and HERPUD1. Finally, the
paper [18] shows that the gene for ATF4 is upregulated at 12-24 h in response
to three out of seven drugs commonly used as UPR inducers. In all, twenty one
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transcripts from Top20X were found to be related to UPR using GO annota-
tions, pathway databases, and experimental results. Figure 7 shows the overlaid
basic time profiles for these twenty one transcripts. For most of the transcripts,
upregulation seems to start between 24-32 h, while HSPA1A and HSPA1B are
downregulated 18-32 h and upregulated 32-48 h. Both GNG2 and HSPH1 are
downregulated from 32-48 h.

Cyclic Adenosine Monophosphate (cAMP) response. The cAMP-dependent path-
way is a G protein-coupled receptor-triggered signaling cascade, activated by a
number of toxins, with a role in many biological processes, including cell com-
munication [2]. cAMP is produced by conversion of ATP by activated adeny-
late cyclase (also called adenylyl cyclase). The diterpene forskolin is used in
experiments to study cAMP response, as it directly activates adenylate cyclase
thus increasing the level of cAMP. Using time series transcriptomics data from
HepG2/C3A cells treated with forskolin [23] we collected lists of transcripts up
or downregulated early as a model of cAMP responsive genes.
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Fig. 8. Time profiles of cAMP transcripts

Figure 8 shows plots of the time profiles of forskolin responsive transcripts that
also show some response to methamidophos. Except for EGR1 (solid green) and
the ZFPs (reddish) the up regulation appears to start around 24 h. The down
regulation seems to begin around 18 h. This is consistent with a first phase of
up regulation that produces something that activates adenylate cyclase. Of the
twenty six upregulated transcripts suggested by the forskolin data, twelve are
in the methamidophos Top20X: ARRDC3, BHLHE40, CPEB4, EGR1, FOS,
GDF15, HSPA5, JUN, NR4A1, PER1, VGF, and ZFP36. Only five of these
transcripts (FOS, HSPA5, JUN, PER1, and VGF) were in our set of cAMP
annotated transcripts. On the other hand, ID4 and RELN were cAMP annotated
and are not in the forskolin list. Of the five downregulated transcripts suggested
by the forskolin data, two are in the methamidophos Top20X: COL1A1 and
EEF2K. Both are cAMP annotated.

Calcium ion response. Using UniProt GO process annotations we found twenty
one Top20X transcripts annotated with calcium ion (Ca++) related terms.
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Fig. 9. Profiles of calcium ion related transcripts.

Thirteen are upregulated (HTR2B up by 18h; DDIT3, FOS, ITPKB, LDLR,
RASA4, THBS2, WNK1 down by 32 h; and HSP90B1, HSPA5, JUN, SYT11,
VCAN up by 48 h) and eight are down regulated (RGS4, TGM2 down by 18 h;
RASEF, RIMS3, S1PR3 down by 24 h; EEF2K, HSPH1, TFAP2B down by 32
h). Six of the upregulated and four of the down regulated Ca++ transcripts are
ranked GAN real. Two of the upregulated Ca++ transcripts are ranked GAN
fake. Figure 9 shows the expression profiles of these transcripts: upregulated on
the left and downregulated on the right.

3.3 Conjectured acetylcholine build up
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Fig. 10. Response to acetylcholine buildup

The result of acetylcholine esterase inhibition in cultured cells is that acetyl-
choline builds up and binds and activates muscarinic and nicotinic acetylcholine
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receptors [4]. Since methamidophos is a cholinesterase inhibitor we looked for the
consequences of a buildup of acetylcholine. Figure 10 shows a curated pathway
leading from the binding of acetylcholine to the muscarinic receptor ChRm3 to
upregulation of genes known to be upregulated by PMA, a diacylglycerol (DAG)
mimic. This pathway corresponds to the production of DAG and IP3 via break
down of PIP2 by activated PLC. We used the Pathway Logic Datum knowledge
base [8], the derived PMA response network [9] and induction information from
UniProt to identify the genes responding to PMA. The inset in Figure 10 shows
the methamidophos response time profiles of these transcripts. Note that except
for EGR1, these transcripts all are upregulated starting sometime after 24 h.
EGR1 responds to many signals, what is possibly surprising is its delayed up-
regulation, as it is one of the immediate early genes. In addition to the DAG
induced response, IP3 initiates intracellular calcium release, consistent with the
Ca++ response noted above.

Fig. 11. Down regulation of Acetylcholine receptors

The acetylcholine receptors CHRM3, CHRNA3, and CHRNB2, and GPCR bind-
ing partners components GNA11, GNA12 are downregulated starting around 18
h (see Figure 11 ). This could be additional evidence of acetylcholine build up,
with the cell damping the response.

Overlapping roles. There is non-trivial overlap between some pairs of process
specific transcript lists. In particular, ARRDC3, EGR1, FOS, and JUNB belong
to the PMA and cAMP lists; BHLHE40, HSPA5, and JUN belong to the UPR
and cAMP lists; DDIT3, HSP90B1, HSPA5, HSPH1, and JUN belong to the
UPR and Ca++ lists; and FOS, HSPA5, and JUN belong to the cAMP and
Ca++ lists. The UPR and PMA lists do not overlap. HSPA5 and JUN belong
to all lists except PMA and FOS belongs to all lists except UPR. Even though
there are overlaps, each of the four process lists has many transcripts unique to
that list.
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3.4 Some distinguished transcripts

In addition to identifying processes potentially involved in SK-N-AS cell re-
sponse to methamidophos, we are interested in identifying specific transcripts
that might play significant roles. For this purpose we identified three different
Top20X subsets: two based on GAN ranking combined with k−means clustering
and one based on playing a role in multiple processes. In the following, HGNC
transcript names are often followed by process annotations in parentheses.

GAN fake transcripts. In six k−means clusters (three upregulated and three
downregulated) at least half of the Top20X transcripts are GAN fake. This in-
cludes thirty-five of the forty seven Top20X GAN fake transcripts. The three up-
regulated clusters (27, 78, 127) are up by 32h. Cluster 27 contains nine GAN fake
transcripts including CREBRF (UPR), DIAPH2 (actin filament organization),
HDAC5 (chromatin organization), and RASA4 (Ca++). Cluster 78 contains five
GAN fake transcripts, of which two, AHNAK and ITPKB, are Ca++ related.
Cluster 127 contains four GAN fake transcripts including GJA1 (cell communi-
cation by electrical coupling) and IER2 (cell motility). Cluster 81, downregulated
at 8 h, contains seven GAN fake transcripts including three associated to choles-
terol biosynthetic process: DHCR7, HMGCS1, and NSDHL. Clusters 20 and 38
are downregulated at 48 h Cluster 20 contains four GAN fake transcripts in-
cluding ACAT2 (cholesterol biosynthetic process) and TOE1 (Target of EGR1).
Cluster 38 contains six GAN fake transcripts including GNG2 (protein folding,
calcium modulating), ARHGAP28 (negative regulation of stress fiber assembly),
and NEBL (actin filament binding).

GAN real transcripts. The transcripts of eight k-means clusters (five upregu-
lated, three downregulated) were all (with one exception) Top20 GAN real tran-
scripts. Four of these clusters are singletons: CYP1B1, TIPARP, EGR1, and
NEUROG2. TIPARP, a negative regulator of AHR, is the one transcript up at 1
h with sustained upregulation. CYP1B1 (toxin metabolic process) is up by 2 h
and stays up. It is likely oxidizing the toxin. EGR1 (Early growth response pro-
tein 1, PMA, cAMP) a transcription factor, generally showing an early response
to perturbations, is not up until 18 h. NEUROG2 (E-box binding transcription
factor) is downregulated at 18h. The GAN real transcripts NR4A1, VGF, and
ZFP36 form a triplet cluster upregulated at 18-32 h. This cluster is a subset of
the cAMP responsive transcripts. The transcripts DDIT3 (UPR, Ca++), GDF15
(cAMP), PPP1R15A (UPR), and TFPI2 (extracellular matrix) form a cluster of
size four upregulated at 32 h. TXNIP and RHOB form a doublet cluster down-
regulated early (2-4 h). One role of RHOB is actin filament bundle assembly.
According to UniProt, TXNIP is known to be downregulated in response to ox-
idative stress. Txnip, the protein coded by TXNIP inhibits thioredoxin activity
and the proteasomal degradation of Ddit4. TXNIP also stands out because it
is in the top 20 real transcripts for one of the GAN models and in the top 20
fake transcripts in another of the GAN models. This dual ranking is rare. RGS4
(GAP, Ca++), HAND1 (transcription factor) and POPDC2 (cAMP-binding,
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regulation of membrane potential) form a triplet cluster downregulated at 18
h. POPDC2 is the exception, it is top 30 GAN real ranked. Finally, CACNG4
(membrane depolarization) and NCOA5 (glucose homeostasis and negative reg-
ulation of insulin receptor signaling) form a cluster of 2 downregulated at 18 h.
The remaining GAN real transcripts appear in clusters where most elements are
not GAN ranked. For example cluster 66 has 5 elements, all in the UPR process
list, only two (HIST2H2BE and JUN) are top 20 GAN real.

Multirole transcripts. Thirteen transcripts were selected from the Top20X be-
cause they were annotated by multiple specific GO process terms that stood out
in a scan of the UniProt GO annotations or in multiple Panther overrepresenta-
tion groups.

HGNC UpBy Top Annotations Code [input] GO	terms
EGR1 +18:* GR	TM PMA;	cAMP;	BMP;	hypoxia;insulin PC udby2 circadian	rhythm
ID1 +18:* GR actin;	angio;	BMP;	cell	cycle;	PC;	PR;	gf-r/s PR udby2 regulation	of	metabolic	process				
ZFP36 +18:* GR	TM cAMP;	gluc;	gf-r;PR;PM;tnf PM .67sepx RNA	metabolic	process
GADD45A +32:* (t30R) cell	cycle;	DNA	damage;	gf-s;	PR actin actin	filament/cytoskeleton				
PER1 +32:* cAMP;	PC;	cyto;	gluc;	PR; angio angiogenisis
NR1D1 +32:* (t30R) PC;	insulin;	PR bmp BMP	signaling
FOS +32: GR PMA;	cAMP	ca++;		gf-p cyto cytokine	response/activity/secretion
JUN +32:* GR	TM UPR;	cAMP	ca++;	angio;	cell	cycle;	cyto;	H2O2 gf-r response	to	...	growth	factor
NR4A1 +32:* GR	TM cAMP;	angio;	cell	cycle;	gf-r gf-s growth	factor	signaling
GDF15 +32:* GR cAMP;	BMP;	cyto;	pkb;	PR gf-p growth	factor	production
PPP1R15A +32:* GR UPR;	cell	cycle;	DNA	damage;	PR gluc glucocorticoid
HSP90B1 +48:* UPR;	ca++;	hypoxia pkb protein	kinase	B	
HSPA5 +48:* GR UPR;	cAMP	ca++;	cocaine;	gf-r/s tnf cellular	response	to	TNF

Fig. 12. Multirole transcripts. PMA, UPR, cAMP, and Ca++ refer to the process
groups discussed in section 3.2. UPR includes unfolded protein response; ER stress,
protein folding Ca++ includes calcium ion release, sequestering and transport. The P
in PC,PR,PM indicate annotations derived from Panther analysis.

The table in Figure 12 summarizes these transcripts with their annotations.
Except for PER1 and HSP901B1 all are top 30 GAN real ranked and of the latter
all but GADD45A and NR1D1 are top 20 GAN real ranked. Three of the four
processes already identified are well represented: UPR 4, Ca++ 6, and cAMP 8.
Five of the transcripts are annotated with cell cycle. Three are annotated with
BMP signaling, three with cytokine related processes, three with angiogenesis
and three with circadian rhythm (PC). Six are annotated with growth factor
related terms and seven are annotated with regulation of metabolic processes.

3.5 Inferred causal relations

Figure 13 shows a sample of the top 200 causal relations proposed by the Siamese
Convolutional algorithm restricted to transcripts in Top20X. * indicates top 20
GAN real ranking and # indicates top 20 GAN fake ranking. The numbers are
cluster identifiers. We see that edges are often within a cluster, and clusters 3,
10, 35, 112, 127 form a connected component.
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ARRDC3	3	->	[CD68*	35] CD68*	35	->	[NR1D1	35]
SLC2A3	3	->	[PER1	3;PPP1R15A*	112] NR1D1	35	->	[ZFP36*	10;ARRDC3	3]
ZFP36*	10	->	[CD68*	35] DDIT3*	112	->	[GDF15*	112]	
NR4A1*	10	->	[VGF*	10;ARRDC3	3] PPP1R15A*	112	->	[PER1	3]
VGF*		10	->	[DKK1	35] HDAC5#	127	->	[RASA4#	127]
																					 RASA4#	127	->	[ID1*	35]

Fig. 13. Sample Edges from the Siamese Network

The algorithm is more confident about the existence of an edge than about
the direction. Thus the fact that we see cycles such as NR1D1-[ZFP36,ARRDC3]-
CD68-NR1D1 is not totally surprising. What it says is that more information is
needed to refine the relations. The causal relation between DDIT3 (aka CHOP)
and GDF15 in the context of ER stress is supported by work reported in Li et
al [11]. We have not yet found evidence supporting or disagreeing with the other
hypothesized relations.

The following is a sample of the top 1600 causal relations proposed by the
Time warp causal inference algorithm restricted to transcripts in Top20X.

ARRDC3 BHLHE40 CPEB4# CREBRF# DDIT3* FAM72D FOS* GADD45A GDF15*

H1F0 HDAC5# ID4# IER2# ITPKB# NR4A1* PER1 PPP1R15A* SERPINE1

SLC2A3 TFPI2* THBS2 ZNF550

-b> [HIST2H2BE*, HSPA5*, RELN]

Gene set enrichment analysis (GSEA) analysis against the hallmark gene sets
in the Broad Molecular Signatures Database showed overlaps of BHLHE40 FOS
DDIT3 SLC2A3 SERPINE1 HSPA5 PPP1R15A with the Hallmark-Hypoxia
data set. The data set contains 200 genes upregulated in response to low oxygen
levels (hypoxia). BHLHE40 FOS DDIT3 SLC2A3 SERPINE1 HSPA5 THBS2
NR4A1 showed overlaps with the Winter-Hypoxia-Metagene data set. The data
set contains 242 genes regulated by hypoxia, based on literature searches. In
addition, RELN was shown to be regulated by Hif1 alpha and Hif2 alpha in [16].
Hypoxia has been known for a long time to cause ER stress [28] and HIST2H2BE,
HSPA5 are among the transcripts identified above as part of the UPR response.
The ENCODE Transcription Factor Binding Site Profiles dataset shows that
the promoters for HIST2HBE, HSPA5 and RELN all have binding sites for
BHLHE40 and that HIST2HBE and HSPA5 also have binding sites for FOS.

4 Materials and methods

4.1 Data Generation

Cell Culture and Exposure. SK-N-AS cells (ATCC® CRL-2137) were seeded at
5× 105 cells per well in 12-well plates (Thermo ScientificTM BioLite 12-556-005)
in Dulbeccos modified Eagles medium (DMEM, ATCC® 30-2002). The medium
was supplemented with 10% fetal bovine serum (FBS, ATCC® 30-2020), 50
units/mL of penicillin, and 50 g/mL of streptomycin (GibcoTM 15-070-063), and
1% MEM non-essential amino acids solution (GibcoTM 11-140-050). Cells were
incubated at 37◦C and 5% CO2 for 0.5-48 h with or without methamidophos
2 mg/mL (Sigma-Aldrich 33395 and LGC Standards DRE-C14980000). Growth
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medium was removed and cells were mixed with RNAprotect Cell Reagent (Qi-
agen 76526) and frozen at −80◦C until analysis.

HepG2/C3A cells (ATCC® CRL-10741) were seeded at 1×105 cells per well
in 12-well plates (Thermo ScientificTM BioLite 12-556-005) in Eagles minimum
essential medium (EMEM, ATCC® 30-2003). The medium was supplemented
with 10% fetal bovine serum (FBS, ATCC® 30-2020), 50 units/mL of penicillin,
and 50 g/mL of streptomycin (GibcoTM 15-070-063). Cells were incubated at
37◦C and 5% CO2 for 1-48 h with or without forskolin 25 M (R&D Systems
1099/10). Growth medium was removed and cells were mixed with RNAprotect
Cell Reagent (Qiagen 76526) and frozen at −80◦C until analysis.

RNA Preparation and Microarray Processing. Total RNA was extracted from
control and treated triplicate exposures using Qiagen’s RNeasy Plus Micro kit
following the manufacturer’s protocol with an additional on-column DNase1
treatment. RNA concentration (Nanodrop ND-1000, ThermoScientific) and qual-
ity (Agilent’s 2100 Bioanalyzer with RNA Nano kit) were determined prior
to whole transcriptome expression analysis using the GeneChipTM WT PLUS
Reagent Kit and GeneChipTM Human Transcriptome Array 2.0 microarrays
(ThermoFisher Scientific). According to manufacturer’s protocols, 100 ng to-
tal RNA was converted to ss-cDNA and 5.5 µg ss-cDNA was fragmented and
labeled. Hybridization and scanning were performed by the Stanford Univer-
sity PAN facility. Data files were processed to determine transcript level aver-
age signal intensities using Affymetrix Expression Console (build 1.4.1.46) and
Transcriptome Analysis Console 3.0 software and annotation file hta-2-0.na34.
hg19.transcript.

5 Discussion, Related and Future Work

Discussion. We confirmed that our suite of analysis algorithms worked when ap-
plied to data from a new cell line treated with a different type of challenge with-
out need to adjust parameters. We used our novel ranking algorithms combined
with significance change filters to select a set of transcripts as a starting point.
Our data analysis then found four processes as candidate elements of the broader
MoA of methamidophos: UPR, cAMP response, calcium ion related processes,
and cell-cell signaling. For each process we identified responding transcripts likely
to participate in that process using a combination of GO process annotations,
data from other experiments and pathway databases. We also curated a model of
acetylcholine buildup as a consequence of the inhibition of acetylcholinesterase
(ACHE). The resulting model suggested three downstream effects: increase in
DAG (PMA response), increase in IP3, and active G-protein-coupled receptor
(GPCR). Increase in IP3 induces release of calcium ion consistent with the iden-
tified calcium ion related response. The cAMP response could be connected to
the acetylcholine signal through the G protein binding partners of ChRm3 or
the calcium ion release. [25] G2 arrest (identified by cyclin profiles) is a pause
in the cell life cycle due to detected problems, such as DNA damage. Nine of
the Top20X transcripts are annotated with DNA damage related terms. The

hta-2-0.na34.hg19.transcript
hta-2-0.na34.hg19.transcript
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strong UPR response suggests another reason for a G2 arrest. We identified a
number of transcripts that are potentially key elements of the MoA using the
GAN fake/real ranking and multirole annotations. Some participate in already
identified processes. The results suggest investigating cell cycle and metabolic
(especially cholesterol) processes in more detail. Finally, results from two dif-
ferent causal inference algorithms suggested new connections as well as finding
some known connections. Although the biological results are maybe not sur-
prising, we were encouraged by the fact that the pure data analysis pulled out
transcripts that when further examined in the light of known biology lead to
reasonable hypotheses.

Related work. Existing approaches to arrive at MoA candidates from omics
data include enrichment and network perturbation analysis methods to infer
causal networks. Enrichment analysis such as Ingenuity® Pathway Analysis (Qi-
agen) [10] and PANTHER [13] rely on extensive curated information to identify
candidate pathways and processes. They provide important information but are
limited by what interactions and pathways researcher have focused on and may
miss important aspects. The detecting mechanism of action by network dysreg-
ulation (DeMAND) algorithm [26] infers the MoA of small molecule compounds
by looking for dysregulation of their molecular interactions following compound
perturbation. It requires an interaction network as input as well as gene expres-
sion profiles of control and treated samples. Multiple timepoints can be used,
but they are treated independently. Protein target inference by network analy-
sis (ProTINA) [15] also uses network perturbation analysis method for inferring
protein targets of compounds from gene transcriptional profiles. The input net-
work models are specific to the experimental context and represent transcription
factor to gene interactions. Dynamic models of gene expression are derived from
these networks enabling ProTINA to leverage the information in timeseries gene
expression profiles. Our analysis of the response to methamidophos used several
available knowledge bases to classify groups of responsive transcripts, but did
not require a prior interaction/gene regulation network.

In [17] the objective is to identify a set of core differentially expressed tran-
scriptional regulators in the TLR-stimulated macrophage and the clusters of
co-expressed genes that they may regulate. The methods used include clustering
of expression time profiles; GO annotations of the gene clusters; time-lagged cor-
relation; and promoter sequence scanning for transcription factor (TF) binding
sites recognized by a differentially expressed TF. This approach to analysis of
timeseries transcriptomics data is closer in spirit to our work and suggests our
analysis might benefit from looking at promoter sequences to refine the inferred
causal relations.

The analysis was able to recover many known regulators, and also identified
a potential transcriptional regulator not previously known to play a direct role
in TLR-stimulated macrophage activation, TGIF1. The review [29] discusses
additional work by the ISB group using similar techniques to infer transcriptional
relations from time series data measured over a variety of conditions.
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Li et. al. [12] treated SK-N-SH human neuroblastoma cells with three organo-
phosphates including methamidophos with high and low doses for 24h and an-
alyzed the resulting transcriptomics data. The doses for methamidophos were
roughly 10 and 200 times the concentration used in the present study. The ob-
jective was a comparative study and since they found little common responsed
they combined the data for the three experiments for fold change analysis. Thus
we can not make a meaningful comparison with our results based on the results
reported in the paper.

Future directions. Our analysis revealed potentially interesting downstream ef-
fects of methamidophos and also suggests a number of interesting future direc-
tions. One is developing methods to better understand which of the multiple pre-
dicted roles different transcripts are playing and when. Another future direction
is understanding the meaning of edges in graphs synthesized using algorithms
with different assumptions to understand in what sense are they “causal”. The
two algorithms used in the present study to infer causal relations from timeseries
data give qualitatively different, complementary views of the potential causal
network hidden in the data. The timewarp algorithm produces short chains (in
theMethamidophos case, length 1) and clustered relations– pairs of groups of
compounds where there is an edge from every element of one group, to every
element of the other group as illustrated above. In contrast, the Siamese Twin
algorithm produces longer chains of causality edges with more diversity of con-
nections (a sparser graph). One reason is likely the discrete treatment of time
and expression levels used by the timewarp algorithm. As both views seem to
provide useful information, more work is needed to understand the precise bio-
logical interpretation of the inferred networks. A first step might be taking into
account available promoter binding information, but much more work is needed
here. For example, can we extract interpretable features that the machine learn-
ing algorithms find? Will that help with understanding the anomalies and the
derived “causal” relations? 10

10 Disclaimer. Research was sponsored by the U.S. Army Research Office and the De-
fense Advanced Research Projects Agency and was accomplished under Cooperative
Agreement Number W911NF-14-2-0020. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research Office, DARPA,
or the U.S. Government. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any copyright notation
hereon.
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6 Appendix

6.1 Predicate details

We define a number of predicates used to select subsets of transcripts and com-
pare them. Roughly they concern qualitative measures of significance (signal
vs. noise), measures of change, and ranking functions indicating the presence of
distinctive/discriminating features.

Measures of significance and change

Measures of significance. The predicate sep(d, n) holds for a transcript if there
is white space (non-overlap/separation) between d standard deviation bands
around treated and control GP time profiles for at least n (of 100) time points.
Thus sep(1, 15) holds for a transcript if the 1 standard deviation bands around
the GP treated and control time profiles do not overlap for at least 15 time points.
A measured time is called o-significant if the treated and control measurements
define non-overlapping intervals.

Measures of change. In the following we give the predicate name (a short name
usable to label rows and columns) and the definition for measure of change
predicates.

– 2sd : sep(2, 1)
– 1sd : sep(1, 1)
– 1sd33 : sep(1, 33)
– 1sd15 : sep(1, 15)
– 67sd33 : sep(.67, 33)
– udby1 : change of at least 1 log2 fold (at some o-significant measured time)
– udby2 : change of at least 2 log2 fold (at some o-significant measured time)
– nsig6 : at least 6 o-significant measured time points
– good : udby1 or 2sd

Ranking functions We defined three groups of functions to rank transcripts
according to some measure of possible importance. The functions are represented
as lists of elements in order of decreasing rank.

PCA. There are 6 PCA ranking functions two for each of the top 3 PCA com-
ponents (one positive and one negative). The rank corresponds to the impor-
tance/weight of transcript in the given PCA component.

Anom. This ranks transcripts according to quality of the GP profile recon-
structed from the autoencoders representation. The worse the reconstruction
quality the higher the rank, viewing the profile as representing anomalous be-
havior. [24]
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GAN. Generative Adversarial Network models rank transcripts according to how
confident the trained discriminator is that the GP profile represents a transcript.
High fake ranking cooresponds to low confidence that a profile comes from a
transcript (i.e. high confidence it is not), and high real ranking corresponds to
high confidence that the profile represents a transcript. We use three models
parameterized by the feature window size (Section ??).

Discriminators. In the following we give the predicate name (a short name
usable to label rows and columns) and the definition for discriminator predicates.

– t20PCA : ranked in the top 20 in some PCA component
– t20an : ranked in the top 20 by some anomaly measure
– t20gf : ranked top 20 fake by some GAN discriminator
– t20gr : ranked top 20 real by some GAN discriminator
– t20 : top20PCA or top20Anom or top20gan-fake or top20gan-real
– t20x : t20 and (1sd15 or udby1) also known as Top20X

Fig. 14. Comparing transcript sets
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In the tables of figure 14 the size of the different sets and their intersections are
shown. In the top two tables the entries n (other than the total column) is read
n% of elements in the set given by the row label belong to the set given by the
column label. In the bottom table the entries simply represent the size of the
intersection.

6.2 Panther over representation analysis results

We used the gene-list analysis service provided by the PantherDB website (www.
pantherdb.org). HGNC gene ids were uploaded from files. We selected Statisti-
cal overrepresentation test, using the default settings and Homo Sapiens organ-
ism. The results are presented as a tree of GO-slim process terms. Each node
is associated with information includeing the elements of the uploaded gene-list
that are annotated with the nodes process term and the fold enrichment. Results
were limited to those with FDR P-value < 0.05.

Nine different transcript sets defined using predicates of section 6.1 were
analyzed. The following summarizes the results: the predicate, the size of the set
(in parens), number of GOSlim leaves. Each header is followed by a list of process
terms, each with the number of associated transcripts and the fold enrichment.

– Top20X (194) no significant results
– udby1 (1389) no significant results
– udby2 (93)

• circadian rhythm [3, 36]
• regulation of metabolic process [18, 3]

– 67sd33 (701)
• rRNA processing [15, 4.26]

∗ RNA metabolic process [37, 2.3]
· aromatic/nucleobase-containing compound metabolic process [52,

2.3]
– up log2 fold by 1 hr (545)

• lymphocyte proliferation (Interferons) [7, 7]
• detection of chemical stimulus involved in sensory perception (olfactory

receptors) [24, 4.5]
• localization [23, .48]
• cellular metabolic process [12, .31]

– up log2 fold by 32h (155) leaves grouped in informal categories
• Metabolic (Aldo-keto reductases, R:bile acid synthesis)

∗ prostaglandin metabolic process [3, 57]
∗ secondary metabolic process [3, 28]
∗ hormone metabolic process [4, 23]

• Growth factor response (negative)
∗ response to fibroblast growth factor [3, 57]
∗ cellular response to growth factor stimulus [3, 15]

• negative regulation of MAP kinase activity [5, 50]
• (regulation of) circadian rhythm [3+5 49,35]

www.pantherdb.org
www.pantherdb.org
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• Chromatin related (6 terms)

∗ chromatin assembly or disassembly [3, 30]
∗ negative regulation of chromatin silencing [3, 30]
∗ negative regulation of DNA recombination [3, 21]
∗ nucleosome organization [3, 20]
∗ chromosome condensation [3, 18]
∗ chromatin silencing [4, 14]

• cellular response to peptide hormone stimulus [3, 30]

• response to radiation [3, 17]

• cell development [6, 7]

• regulation of cell cycle [9, 7]

• localization [3, .21]

– dn log2 fold by 32h (146)

• mRNA polyadenylation [4, 21]

• DNA metabolic process [12, 5]

– up log2 fold by 48h (62)

• Heat shock related (3 terms total 6 47-92)

∗ cellular response to unfolded protein [3, 92]
∗ cellular response to heat [4, 47]
∗ chaperone-mediated protein folding [6, 55]

• nucleosome assembly [5, 47] (Histones)

– dn log2 fold by 48h (433)

• transcription, DNA-templated [47, 2] (17 ZNFs)

Notice that localization is underrepresented in the 67sd33 and upby 32 h tran-
script sets.

6.3 Cell-cell signaling.

Following up on the suggestion of cell-cell signaling response from the Miru
analysis, we found that three k-means clusters have cell-cell signaling annotation.
Interestingly, these clusters also have the G protein-coupled receptor signaling
pathway annotation. Members of these clusters all have an upregulation peak
at 1 h. No members of theses clusters with cell cell signaling annotation are in
Top20X, so we selected transcripts that are either up or downregulated by 1
log2 fold at some time, or pass the 2 standard deviation separation test. We call
these ‘good’.

– Cluster 55 has 7 good transcripts with cell-cell signaling annotation: CCR5
FGF16 FGF6 GJA3 IAPP IFNA2 IL17A

– Cluster 116 has 2 good transcripts with cell-cell signaling annotation: CCL13
IFNA7

– Cluster 124 has 1 good transcript with cell-cell signaling annotation: CCL7
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Fig. 15. Basic time profiles of cell-cell signaling annotated transcripts

Figure 15 shows the time profiles of these transcripts. We see the 1 h spike
followed by rather unsettled but low level response.
FGF6, FGF16 are growth factors and GJA3 is a gap junction protein. According
to Wikipedia, IAPP (aka DAP, Amylin, or islet amyloid polypeptide), is a 37-
residue peptide hormone that selectively regulates glucose metabolism. The rest
are immune response proteins.

We checked the Top20X transcripts and found that only one, GDF15, is
annotated with cell-cell signaling. The basic time profile of GDF15 has .7 log2
ratio at 1 h, but then no measurable response until 32 h (where its has a 2 log2
ratio). Clearly, having data measuring what is secreted would help to determine
if cell-cell signaling is a real response and how it fits with other processes.

6.4 Distinguished transcripts

GAN fake cluster details. In the following we list each GAN fake cluster, its
GAN fake members and key associated GO terms, if any. I the first item “kmr27”
identifies k-means ratio cluster 27. “(+32:*)” says the cluster is upregulated (+)
at 32h and stays up (*) (to the end of the measured times). “9 fake of 10 Top20X
of 24 total” says the cluster has 24 members, 10 of which are Top20X, and 9 of
these are ranked GAN fake.

– kmr27 (+32:*) 9 fake of 10 Top20X of 24 total
• CREBRF - negative regulation of endoplasmic reticulum unfolded pro-

tein response
• DIAPH2 - actin filament organization
• ERMP1 - metal ion binding
• HDAC5 - chromatin organization; response to LPS and to insulin
• IDS - glycosaminoglycan catabolic process
• LACTB - regulation of lipid metabolic process



30

• RASA4 - Ca++; negative regulation of Ras protein signal transduction
• SPRY4 - negative regulation of Ras protein signal transduction
• ZNF550

– kmr78 (+32:*) 5 fake of 10 Top20X of 39 total
• AHNAK - regulation of voltage-gated calcium channel activity
• ARMCX1
• ITPKB - Ca++; inositol phosphate biosynthetic process
• SMAD9 - cellular response to BMP stimulus
• TBX20 - negative regulation of SMAD protein complex assembly; muscle

contraction
– kmr127 (+32:*) 4 fake of 6 Top20X of 28 total

• GJA1 - cell communication by electrical coupling; positive regulation of
I-kappaB kinase/NF-kappaB signaling

• ID4 - transcription factor; circadian rhythm
• IER2 - cell motility
• MIDN - negative regulation of glucokinase activity;

– kmr81 (min@8h) 7 fake of 7 Top20X of 36 total
• ARFGAP2 - endoplasmic reticulum to Golgi vesicle-mediated transport;

GTPase activator activity
• DHCR7 - cholesterol biosynthetic process; 7-dehydrocholesterol reduc-

tase activity
• HMGCS1 - cellular response to cholesterol; cholesterol biosynthetic pro-

cess
• METTL12 - protein methylation
• NSDHL - cholesterol biosynthetic process
• TSPYL4
• UBXN8 - ubiquitin-dependent ERAD pathway (targeting ER-resident

proteins for degradation)
– kmr20 (-48:*) 4 fake of 4 Top20X of 58 total

• ACAT2 - cholesterol esterification; cholesterol O-acyltransferase activity;
cholesterol biosynthetic process

• LANCL2 - negative regulation of transcription
• PHF23 - positive regulation of protein ubiquitination
• TOE1 - (Target of EGR1) RNA phosphodiester bond hydrolysis,

– kmr38 (-48:*) 6 fake of 10 Top20X of 46 total
• ARHGAP28 - negative regulation of stress fiber assembly
• FNTB - protein farnesylation;
• GNG2 - G protein-coupled receptor signaling pathway; adenylate cyclase-

activating
• IGFBP4 - regulation of glucose metabolic process
• NEBL - actin filament binding
• PIGA - phosphatidylinositol N-acetylglucosaminyltransferase

Note that Cluster 81 has several cholesteral related transcripts. Also (not shown)
the graphs generated by several algorithms predict that HMGCS1 is well-connected.
It is interesting to consider if some Cholestorol pathway has a specific role or it
is a generic response.
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GAN real clusters. In the following we list each GAN real cluster, its GAN real
members and key associated GO terms, if any. The notation is the same as for
GAN fake clusters.

– kmr83 (+1:*) 1 real of 1 Top20X of 1 total
• TIPARP - Acts as a negative regulator of AHR which inhibits PER1

expression cellular response to organic cyclic compound
– kmr44 (+2:*) 1 real of 1 Top20X of 1 total

• CYP1B1 - toxin metabolic process
– kmr10 (+18-32:*), 3 real of 3 Top20X of 3 total

• NR4A1 - cAMP; negative regulation of cell cycle
• VGF - cAMP; cellular protein metabolic process; glucose homeostasis;

insulin secretion;
• ZFP36 - cAMP; mRNA catabolic process; negative regulation of polynu-

cleotide adenylyltransferase activity;
– kmr42 (+18:*) 1 real of 1 Top20X of 1 total

• EGR1 - transcription factor; protein refolding; negative regulation of cell
proliferation; regulation of protein ubiquitination

– kmr112 (+32:*) 4 real of 4 Top20X of 4 total
• DDIT3 - UPR; Ca++; cell cycle arrest; cellular response to DNA damage

stimulus
• GDF15 - cAMP; BMP signaling pathway; cell-cell signaling;
• PPP1R15A - UPR; cell cycle arrest; cellular response to DNA damage

stimulus; negative regulation of protein dephosphorylation
• TFPI2 - extracellular matrix structural constituent; serine-type endopep-

tidase inhibitor activity
– kmr63 (-2,4:*) 2 real of 2 Top20X of 2 total

• RHOB - actin filament bundle assembly; positive regulation of angiogen-
esis; endosome to lysosome transport

• TXNIP - Ca++; cell cycle; negative regulation of cell division; response
to hydrogen peroxide/glucose

– kmr85 (-18:*) 1 real of 1 Top20X of 1 total
• NEUROG2 - E-box binding transcription factor

– kmr71 (-18:*) 3 real of 3 Top20X of 3 total
• HAND1 - transcription factor
• RGS4 - negative regulation of G-protein coupled receptor protein signal-

ing pathway; G-protein alpha-subunit binding calmodulin binding;
• POPDC2 - cAMP-binding, regulation of membrane potential

– kmr87 (-18,24:*) 2 real of 2 Top20X of 2 total
• CACNG4 - membrane depolarization; neurotransmitter receptor inter-

nalization; positive regulation of AMPA receptor activity
• NCOA5 - glucose homeostasis; negative regulation of insulin receptor

signaling pathway
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